INTRODUCTION

This section explains the earthmoving principles used to determine machine productivity. It shows how to calculate production on-the-job or estimate production off-the-job.

Machine performance is usually measured on an hourly basis in terms of machine productivity and machine owning and operating cost. Optimum machine performance can be expressed as follows:

\[
\text{Lowest cost per ton} = \frac{\text{Lowest Possible Hourly Costs}}{\text{Highest Possible Hourly Productivity}}
\]

ELEMENTS OF PRODUCTION

Production is the hourly rate at which material is moved. Production can be expressed in various units:

Metric
- Bank Cubic Meters — BCM — bank m\(^3\)
- Loose Cubic Meters — LCM — loose m\(^3\)
- Compacted Cubic Meters — CCM — compacted m\(^3\)
- Tonnes

English
- Bank Cubic Yards — BCY — bank yd\(^3\)
- Loose Cubic Yards — LCY — loose yd\(^3\)
- Compacted Cubic Yards — CCY — compacted yd\(^3\)
- Tons

For most earthmoving and material handling applications, production is calculated by multiplying the quantity of material (load) moved per cycle by the number of cycles per hour.

\[
\text{Production} = \text{Load/cycle} \times \text{cycles/hour}
\]

The load can be determined by
1. load weighing with scales
2. load estimating based on machine rating
3. surveyed volume divided by load count
4. machine payload measurement system

Generally, earthmoving and overburden removal for coal mines are calculated by volume (bank cubic meters or bank cubic yards). Metal mines and aggregate producers usually work in weight (tons or tonnes).
Volume Measure — Material volume is defined according to its state in the earthmoving process. The three measures of volume are:

- **BCM (BCY)** — one cubic meter (yard) of material as it lies in the natural bank state.
- **LCM (LCY)** — one cubic meter (yard) of material which has been disturbed and has swelled as a result of movement.
- **CCM (CCY)** — one cubic meter (yard) of material which has been compacted and has become more dense as a result of compaction.

In order to estimate production, the relationships between bank measure, loose measure, and compacted measure must be known.

Swell — Swell is the percentage of original volume (cubic meters or cubic yards) that a material increases when it is removed from the natural state. When excavated, the material breaks up into different size particles that do not fit together, causing air pockets or voids to reduce the weight per volume. For example to hold the same weight of one cubic unit of bank material it takes 30% more volume (1.3 times) after excavation. (Swell is 30%).

\[
1 + \text{Swell} = \frac{\text{Loose cubic volume for a given weight}}{\text{Bank cubic volume for the same given weight}}
\]

\[
\text{Bank} = \frac{\text{Loose}}{(1 + \text{Swell})}
\]

\[
\text{Loose} = \text{Bank} \times (1 + \text{Swell})
\]

Example Problem:
If a material swells 20%, how many loose cubic meters (loose cubic yards) will it take to move 1000 bank cubic meters (1308 bank cubic yards)?

\[
\text{Loose} = 1000 \text{ BCM} \times (1 + 0.2) = 1200 \text{ LCM}
\]

\[
1308 \text{ BCY} \times (1 + 0.2) = 1570 \text{ LCY}
\]

How many bank cubic meters (yards) were moved if a total of 1000 loose cubic meters (1308 yards) have been moved? Swell is 25%.

\[
\text{Bank} = \frac{\text{Loose}}{(1 + \text{Swell})} = \frac{1000 \text{ LCM}}{(1 + 0.25)} = 800 \text{ BCM}
\]

\[
1308 \text{ LCY} \div (1 + 0.25) = 1046 \text{ BCY}
\]

Load Factor — Assume one bank cubic yard of material weighs 3000 lb. Because of material characteristics, this bank cubic yard swells 30% to 1.3 loose cubic yards when loaded, with no change in weight. If this 1.0 bank cubic yard or 1.3 loose cubic yards is compacted, its volume may be reduced to 0.8 compacted cubic yard, and the weight is still 3000 lb.

Instead of dividing by 1 + Swell to determine bank volume, the loose volume can be multiplied by the load factor.

If the percent of material swell is known, the load factor (L.F.) may be obtained by using the following relationship:

\[
\text{L.F.} = \frac{100\%}{100\% + \% \text{swell}}
\]

Load factors for various materials are listed in the Tables Section of this handbook.

To estimate the machine payload in bank cubic yards, the volume in loose cubic yards is multiplied by the load factor:

\[
\text{Load (BCY)} = \text{Load (LCY)} \times \text{L.F.}
\]

The ratio between compacted measure and bank measure is called shrinkage factor (S.F.):

\[
\text{S.F.} = \frac{\text{Compacted cubic yards (CCY)}}{\text{Bank cubic yards (BCY)}}
\]

Shrinkage factor is either estimated or obtained from job plans or specifications which show the conversion from compacted measure to bank measure. Shrinkage factor should not be confused with percentage compaction (used for specifying embankment density, such as Modified Proctor or California Bearing Ratio [CBR]).

Material Density — Density is the weight per unit volume of a material. Materials have various densities depending on particle size, moisture content and variations in the material. The denser the material the more weight there is per unit of equal volume. Density estimates are provided in the Tables Section of this handbook.

\[
\text{Density} = \frac{\text{Weight}}{\text{Volume}} = \frac{\text{kg (lb)}}{\text{m}^3 \ (\text{yd}^3)}
\]

\[
\text{Weight} = \text{Volume} \times \text{Density}
\]
A given material’s density changes between bank and loose. One cubic unit of loose material has less weight than one cubic unit of bank material due to air pockets and voids. To correct between bank and loose use the following equations.

\[
1 + \text{Swell} = \frac{\text{kg/BCM}}{\text{kg/LCM}} \quad \text{or} \quad \frac{\text{lb/BCY}}{\text{lb/LCY}}
\]

\[
\text{lb/LCY} = \frac{\text{lb/BCY}}{1 + \text{Swell}}
\]

\[
\text{lb/BCY} = \text{lb/LCY} \times (1 + \text{Swell})
\]

Fill Factor — The percentage of an available volume in a body, bucket, or bowl that is actually used is expressed as the fill factor. A fill factor of 87% for a hauler body means that 13% of the rated volume is not being used to carry material. Buckets often have fill factors over 100%.

Example Problem:

A 14 cubic yard (heaped 2:1) bucket has a 105% fill factor when operating in a shot sandstone (4125 lb/BCY and a 35% swell).

a) What is the loose density of the material?
b) What is the usable volume of the bucket?
c) What is the bucket payload per pass in BCY?
d) What is the bucket payload per pass in tons?

\[
a) \quad \frac{\text{lb/BCY}}{1 + \text{Swell}} = 4125 \div (1.35) = 3056 \text{ lb/LCY} \\
b) \quad \text{LCY} = \text{rated LCY} \times \text{fill factor} = 14 \times 1.05 = 14.7 \text{ LCY} \\
c) \quad \text{BCY/pass} = \text{volume} \times \text{density} \text{ lb/LCY} = 14.7 \times 3056 = 44,923 \text{ lb} \\
\text{BCY/pass} = \text{weight} \div \text{density} \text{ lb/LCY} = 44,923 \div 4125 = 10.9 \text{ BCY} \\
or \quad \text{bucket LCY from part b} \div (1 + \text{Swell}) = 14.7 \div 1.35 = 10.9 \text{ BCY} \\
d) \quad \text{tons/pass} = \frac{\text{lb}}{2000} \text{ lb/ton} = 44,923 \div 2000 = 22.5 \text{ tons}
\]

Example Problem:

Construct a 10,000 compacted cubic yard (CCY) bridge approach of dry clay with a shrinkage factor (S.F) of 0.80. Haul unit is rated 14 loose cubic yards struck and 20 loose cubic yards heaped.

a) How many bank yards are needed?
b) How many loads are required?

\[
a) \quad \text{BCY} = \frac{\text{CCY}}{\text{S.F.}} = \frac{10,000}{0.80} = 12,500 \text{ BCY} \\
b) \quad \text{Load (BCY)} = \text{Capacity (LCY)} \times \text{Load factor (L.F.)} = 20 \times 0.81 = 16.2 \text{ BCY/Load} \\
\text{Number of loads required} = \frac{12,500 \text{ BCY}}{16.2 \text{ BCY/Load}} = 772 \text{ Loads}
\]

Soil Density Tests — There are a number of acceptable methods that can be used to determine soil density. Some that are currently in use are:

- Nuclear density moisture gauge
- Sand cone method
- Oil method
- Balloon method
- Cylinder method

All these except the nuclear method use the following procedure:

1. Remove a soil sample from bank state.
2. Determine the volume of the hole.
3. Weigh the soil sample.
4. Calculate the bank density kg/BCM (lb/BCY).

The nuclear density moisture gauge is one of the most modern instruments for measuring soil density and moisture. A common radiation channel emits either neutrons or gamma rays into the soil. In determining soil density, the number of gamma rays absorbed and back scattered by soil particles is indirectly proportional to the soil density. When measuring moisture content, the number of moderated neutrons reflected back to the detector after colliding with hydrogen particles in the soil is directly proportional to the soil’s moisture content.

All these methods are satisfactory and will provide accurate densities when performed correctly. Several repetitions are necessary to obtain an average.

NOTE: Several newer methods have been successfully applied, along with weigh scales to determine volume and loose density of material moved in hauler bodies. These measurements include photogrammatic and laser scanning technologies.
Figuring Production On-the-Job

Load Weighing — The most accurate method of determining the actual load carried is by weighing. This is normally done by weighing the haul unit one wheel or axle at a time with portable scales. Any scales of adequate capacity and accuracy can be used. While weighing, the machine should be level to reduce error caused by weight transfer. Enough loads should be weighed to provide a good average. Machine weight is the sum of the individual wheel or axle weights.

The weight of the load can be determined using the empty and loaded weight of the unit.

\[
\text{Weight of load} = \text{Loaded machine weight} - \text{Empty machine weight}
\]

To determine the bank cubic measure carried by a machine, the load weight is divided by the bank-state density of the material being hauled.

\[
\text{BCY} = \frac{\text{Weight of load}}{\text{Bank density}}
\]

Times Studies — To estimate production, the number of complete trips a unit makes per hour must be determined. First obtain the unit’s cycle time with the help of a stop watch. Time several complete cycles to arrive at an average cycle time. By allowing the watch to run continuously, different segments such as load time, wait time, etc. can be recorded for each cycle. Knowing the individual time segments affords a good opportunity to evaluate the balance of the spread and job efficiency. The following is an example of a scraper load time study form. Numbers in the white columns are stop watch readings; numbers in the shaded columns are calculated:

<table>
<thead>
<tr>
<th>Total Cycle Times (less delays)</th>
<th>0.00</th>
<th>3.50</th>
<th>4.00</th>
<th>4.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut</td>
<td>0.30</td>
<td>0.30</td>
<td>0.42</td>
<td>0.12</td>
</tr>
<tr>
<td>Wait Time</td>
<td>0.30</td>
<td>2.35</td>
<td>0.12</td>
<td>5.85</td>
</tr>
<tr>
<td>Begin Load</td>
<td>0.60</td>
<td>3.80</td>
<td>7.85</td>
<td>3.60</td>
</tr>
<tr>
<td>Load Time</td>
<td>0.90</td>
<td>4.45</td>
<td>10.95</td>
<td>13.60</td>
</tr>
<tr>
<td>End Load</td>
<td>0.65</td>
<td>9.95</td>
<td>1.00</td>
<td>6.30</td>
</tr>
<tr>
<td>Begin Delay</td>
<td>0.70</td>
<td>8.55</td>
<td>6.30</td>
<td>9.95</td>
</tr>
<tr>
<td>Delay Time</td>
<td>0.65</td>
<td>9.95</td>
<td>1.00</td>
<td>6.30</td>
</tr>
<tr>
<td>End Delay</td>
<td>0.65</td>
<td>9.95</td>
<td>1.00</td>
<td>6.30</td>
</tr>
</tbody>
</table>

Example (English)

A job study of a Wheel Tractor-Scraper might yield the following information:

- Average wait time = 0.28 minute
- Average load time = 0.65
- Average delay time = 0.25
- Average haul time = 4.26
- Average dump time = 0.50
- Average return time = 2.09
- Average total cycle = 8.03 minutes
- Less wait & delay time = 0.53
- Average cycle 100% eff. = 7.50 minutes

Weight of haul unit empty — 48,650 lb
Weights of haul unit loaded —
- Weighing unit #1 — 93,420 lb
- Weighing unit #2 — 89,770 lb
- Weighing unit #3 — 88,760 lb

\[
\text{271,950 lb; average } = 90,650 \text{ lb}
\]

1. **Average load weight** = 90,650 lb – 48,650 lb = 42,000 lb
2. **Bank density** = 3125 lb/BCY
3. **Load** = \[
\frac{\text{Weight of load}}{\text{Bank density}}
\] = \[
\frac{42,000 \text{ lb}}{3125 \text{ lb/BCY}} = 13.4 \text{ BCY}
\]
4. **Cycles/hr** = \[
\frac{60 \text{ min/hr}}{7.50 \text{ min/cycle}} = 80 \text{ cycles/hr}
\]
5. **Production** = Load/cycle \times cycles/hr
 (less delays) = 13.4 BCY/cycle \times 8.0 cycles/hr = 107.2 BCY/hr

Time is any time, other than wait time, when a machine is not performing in the work cycle (scraper waiting to cross railroad track).

To determine trips-per-hour at 100% efficiency, divide 60 minutes by the average cycle time less all wait and delay time. Cycle time may or may not include wait and/or delay time. Therefore, it is possible to figure different kinds of production: measured production, production without wait or delay, maximum production, etc. For example:

- **Actual Production:** includes all wait and delay time.
- **Normal Production (without delays):** includes wait time that is considered normal, but no delay time.
- **Maximum Production:** to figure maximum (or optimum) production, both wait time and delay time are eliminated. The cycle time may be further altered by using an optimum load time.
Example (Metric)

A job study of a Wheel Tractor-Scraper might yield the following information:

- Average wait time = 0.28 minute
- Average load time = 0.65
- Average delay time = 0.25
- Average haul time = 4.26
- Average dump time = 0.50
- Average return time = 2.09
- Average total cycle = 8.03 minutes
- Less wait & delay time = 0.53
- Average cycle 100% eff. = 7.50 minutes

Weight of haul unit empty — 22 070 kg
Weights of haul unit loaded —
 Weighing unit #1 — 42 375 kg
 Weighing unit #2 — 40 720 kg
 Weighing unit #3 — 40 260 kg
 123 355 kg; average = 41 120 kg

1. Average load weight = 41 120 kg – 22 070 kg = 19 050 kg
2. Bank density = 1854 kg/BCM
3. Load = \[\frac{\text{Weight of load}}{\text{Bank density}} \]
 \[= \frac{19 050 \text{ kg}}{1854 \text{ kg/BCM}} = 10.3 \text{ BCM} \]
4. Cycles/hr = \[\frac{60 \text{ min/hr}}{7.50 \text{ min/cycle}} = 80 \text{ cycles/hr} \]
5. Production = \[\frac{\text{Load/cycle} \times \text{cycles/hr}}{10.3 \text{ BCM/cycle} \times 8.0 \text{ cycles/hr}} = 82 \text{ BCM/hr} \]

NOTE: The Cat Cycle Timer Program software uses laptop computers in place of stopwatches, organizes the data, and allows study results to be printed.

ESTIMATING PRODUCTION OFF-THE-JOB

It is often necessary to estimate production of earthmoving machines which will be selected for a job. As a guide, the remainder of the section is devoted to discussions of various factors that may affect production. Some of the figures have been rounded for easier calculation.

Rolling Resistance (RR) is a measure of the force that must be overcome to roll or pull a wheel over the ground. It is affected by ground conditions and load — the deeper a wheel sinks into the ground, the higher the rolling resistance. Internal friction and tire flexing also contribute to rolling resistance. Experience has shown that minimum resistance is 1%-1.5% (see Typical Rolling Resistance Factors in Tables section) of the gross machine weight (on tires). A 2% base resistance is quite often used for estimating. Resistance due to tire penetration is approximately 1.5% of the gross machine weight for each inch of tire penetration (0.6% for each cm of tire penetration). Thus rolling resistance can be calculated using these relationships in the following manner:

\[\text{RR} = 2\% \text{ of GMW} + 0.6\% \text{ of GMW per cm tire penetration} \]
\[\text{RR} = 2\% \text{ of GMW} + 1.5\% \text{ of GMW per inch tire penetration} \]

It’s not necessary for the tires to actually penetrate the road surface for rolling resistance to increase above the minimum. If the road surface flexes under load, the effect is nearly the same — the tire is always running “uphill”. Only on very hard, smooth surfaces with a well compacted base will the rolling resistance approach the minimum.

When actual penetration takes place, some variation in rolling resistance can be noted with various inflation pressures and tread patterns.

NOTE: When figuring “pull” requirements for tracktype tractors, rolling resistance applies only to the trailed unit’s weight on wheels. Since tracktype tractors utilize steel wheels moving on steel “roads”, a tractor’s rolling resistance is relatively constant and is accounted for in the Drawbar Pull rating.
Grade Resistance is a measure of the force that must be overcome to move a machine over unfavorable grades (uphill). Grade assistance is a measure of the force that assists machine movement on favorable grades (downhill).

Grades are generally measured in percent slope, which is the ratio between vertical rise or fall and the horizontal distance in which the rise or fall occurs. For example, a 1% grade is equivalent to a 1 m (ft) rise or fall for every 100 m (ft) of horizontal distance; a rise of 4.6 m (15 ft) in 53.3 m (175 ft) equals an 8.6% grade.

\[
\frac{4.6 \text{ m (rise)}}{53.3 \text{ m (horizontal distance)}} = 8.6\% \text{ grade}
\]
\[
\frac{15 \text{ ft (rise)}}{175 \text{ ft (horizontal distance)}} = 8.6\% \text{ grade}
\]

Uphill grades are normally referred to as adverse grades and downhill grades as favorable grades. Grade resistance is usually expressed as a positive (+) percentage and grade assistance is expressed as a negative (–) percentage.

It has been found that for each 1% increment of adverse grade an additional 10 kg (20 lb) of resistance must be overcome for each metric (U.S.) ton of machine weight. This relationship is the basis for determining the Grade Resistance Factor which is expressed in kg/metric ton (lb/U.S. ton):

Grade Resistance Factor = \(\frac{10 \text{ kg/m ton} \times \% \text{ grade}}{20 \text{ lb/U.S. ton} \times \% \text{ grade}} \)

Grade resistance (assistance) is then obtained by multiplying the Grade Resistance Factor by the machine weight (GMW) in metric (U.S.) tons.

Grade Resistance = GR Factor \times GMW in metric (U.S.) tons

Grade resistance may also be calculated using percentage of gross weight. This method is based on the relationship that grade resistance is approximately equal to 1% of the gross machine weight for 1% of grade.

Grade Resistance = 1% of GMW \times \% \text{ grade}

Grade resistance (assistance) affects both wheel and track-type machines.

Total Resistance is the combined effect of rolling resistance (wheel vehicles) and grade resistance. It can be computed by summing the values of rolling resistance and grade resistance to give a resistance in kilogram (pounds) force.

Total Resistance = Rolling Resistance + Grade Resistance

Total resistance can also be represented as consisting completely of grade resistance expressed in percent grade. In other words, the rolling resistance component is viewed as a corresponding quantity of additional adverse grade resistance. Using this approach, total resistance can then be considered in terms of percent grade.

This can be done by converting the contribution of rolling resistance into a corresponding percentage of grade resistance. Since 1% of adverse grade offers a resistance of 10 kg (20 lb) for each metric or (U.S.) ton of machine weight, then each 10 kg (20 lb) of resistance per ton of machine weight can be represented as an additional 1% of adverse grade. Rolling resistance in percent grade and grade resistance in percent grade can then be summed to give Total Resistance in percent or Effective Grade. The following formulas are useful in arriving at Effective Grade.

Rolling Resistance (%) = 2% + 0.6% per cm tire penetration

Grade Resistance (%) = \% \text{ grade}

Effective Grade (%) = RR (%) + GR (%)

Effective grade is a useful concept when working with Rimpull-Speed-Gradeability curves, Retarder curves, Brake Performance curves, and Travel Time curves.

Traction — is the driving force developed by a wheel or track as it acts upon a surface. It is expressed as usable Drawbar Pull or Rimpull. The following factors affect traction: weight on the driving wheel or tracks, gripping action of the wheel or track, and ground conditions. The coefficient of traction (for any roadway) is the ratio of the maximum pull developed by the machine to the total weight on the drivers.

\[
\text{Coeff. of traction} = \frac{\text{Pull}}{\text{weight on drivers}}
\]

Therefore, to find the usable pull for a given machine:

Usable pull = Coeff. of traction \times \text{weight on drivers}

Example: Track-Type Tractor

What usable drawbar pull (DBP) can a 26 800 kg (59,100 lb) Track-type Tractor exert while working on firm earth? on loose earth? (See table section for coefficient of traction.)
Answer:
Firm earth — Usable DBP =
\[0.90 \times 26,800 \text{ kg} = 24,120 \text{ kg}\]
\[(0.90 \times 59,100 \text{ lb} = 53,190 \text{ lb}]\)

Loose earth — Usable DBP =
\[0.60 \times 26,800 \text{ kg} = 16,080 \text{ kg}\]
\[(0.60 \times 59,100 \text{ lb} = 35,460 \text{ lb}]\)

If a load required 21,800 kg (48,000 lb) pull to move it, this tractor could move the load on firm earth. However, if the earth were loose, the tracks would spin.

NOTE: D8R through D11R Tractors may attain higher coefficients of traction due to their suspended undercarriage.

Example: Wheel Tractor-Scraper

What usable rimpull can a 621F size machine exert while working on firm earth? on loose earth? The total loaded weight distribution of this unit is:

Drive unit	Scraper unit
wheels: 23,600 kg wheels: 21,800 kg
\((52,000 \text{ lb})\) \((48,000 \text{ lb})\)

Remember, use weight on drivers only.

Answer:
Firm earth — 0.55 \times 23,600 \text{ kg} = 12,980 \text{ kg}
\((0.55 \times 52,000 \text{ lb} = 28,600 \text{ lb})\)

Loose earth — 0.45 \times 23,600 \text{ kg} = 10,620 \text{ kg}
\((0.45 \times 52,000 \text{ lb} = 23,400 \text{ lb})\)

On firm earth this unit can exert up to 12,980 kg (28,600 lb) rimpull without excessive slipping. However, on loose earth the drivers would slip if more than 10,620 kg (23,400 lb) rimpull were developed.

Altitude — Specification sheets show how much pull a machine can produce for a given gear and speed when the engine is operating at rated horsepower. When a standard machine is operated in high altitudes, the engine may require derating to maintain normal engine life. This engine deration will produce less drawbar pull or rimpull.

The Tables Section gives the altitude deration in percent of flywheel horsepower for current machines. It should be noted that some turbocharged engines can operate up to 4570 m (15,000 ft) before they require derating. Most machines are engineered to operate up to 1500-2290 m (5000-7500 ft) before they require deration.

The horsepower deration due to altitude must be considered in any job estimating. The amount of power deration will be reflected in the machine's gradeability and in the load, travel, and dump and load times (unless loading is independent of the machine itself). Altitude may also reduce retarding performance. Consult a Caterpillar representative to determine if deration is applicable. Fuel grade (heat content) can have a similar effect of derating engine performance.

The example job problem that follows indicates one method of accounting for altitude deration: by increasing the appropriate components of the total cycle time by a percentage equal to the percent of horsepower deration due to altitude. (i.e., if the travel time of a hauling unit is determined to be 1.00 minute at full HP, the time for the same machine derated to 90% of full HP will be 1.10 min.) This is an approximate method that yields reasonably accurate estimates up to 3000 m (10,000 feet) elevation.

Travel time for hauling units derated more than 10% should be calculated as follows using Rimpull-Speed-Gradeability charts.

1) Determine total resistance (grade plus rolling) in percent.

2) Beginning at point A on the chart follow the total resistance line diagonally to its intersection, B, with the vertical line corresponding to the appropriate gross machine weight. (Rated loaded and empty GMW lines are shown dotted.)

3) Using a straight-edge, establish a horizontal line to the left from point B to point C on the rimpull scale.

4) Divide the value of point C as read on the rimpull scale by the percent of total horsepower available after altitude deration from the Tables Section. This yields rimpull value D higher than point C.
5) Establish a horizontal line right from point D. The farthest right intersection of this line with a curved speed range line is point E.
6) A vertical line down from point E determines point F on the speed scale.
7) Multiply speed in kmh by 16.7 (mph by 88) to obtain speed in m/min (ft/min). Travel time in minutes for a given distance in feet is determined by the formula:
 \[
 \text{Time (min)} = \frac{\text{Distance in m (ft)}}{\text{Speed in m/min (ft/min)}}
 \]

The Travel Time Graphs in sections on Wheel Tractor-Scrapers and Construction & Mining Trucks can be used as an alternative method of calculating haul and/or return times.

The following example provides a method to manually estimate production and cost. Today, computer programs, such as Caterpillar’s Fleet Production and Cost Analysis (FPC), provide a much faster and more accurate means to obtain those application results.

Example problem (English)
A contractor is planning to put the following spread on a dam job. What is the estimated production and cost/BCY?

Equipment:
11 — 631G Wheel Tractor-Scrapers
2 — D9T Tractors with C-dozers
2 — 12H Motor Graders
1 — 825G Tamping Foot Compactor

Material:
Description — Sandy clay; damp, natural bed
Bank Density — 3000 lb/BCY
Load Factor — 0.80
Shrinkage Factor — 0.85
Traction Factor — 0.50
Altitude — 7500 ft

Job Layout — Haul and Return:

![Graph of Job Layout](image)

Total Effective Grade = RR (%) ± GR (%)
Sec. A: Total Effective Grade = 10% + 0% = 10%
Sec. B: Total Effective Grade = 4% + 0% = 4%
Sec. C: Total Effective Grade = 4% + 4% = 8%
Sec. D: Total Effective Grade = 10% + 0% = 10%

Job Efficiency is one of the most complex elements of estimating production since it is influenced by factors such as operator skill, minor repairs and adjustments, personnel delays, and delays caused by job layout. An approximation of efficiency, if no job data is available, is given below.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Working Hour</th>
<th>Efficiency Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
<td>50 min/hr</td>
<td>0.83</td>
</tr>
<tr>
<td>Night</td>
<td>45 min/hr</td>
<td>0.75</td>
</tr>
</tbody>
</table>

These factors do not account for delays due to weather or machine downtime for maintenance and repairs. You must account for such factors based on experience and local conditions.

1. Estimate Payload:
Est. load (LCY) × L.F. × Bank Density = payload
31 LCY × 0.80 × 3000 lb/BCY = 74,400 lb payload

2. Establish Machine Weight:
Empty Wt. — 102,460 lb or 51.27 tons
Wt. of Load — 74,400 lb or 37.2 tons
Total (GMW) — 176,860 lb or 88.4 tons

3. Calculate Usable Pull (traction limitation):
Loaded: (weight on driving wheels = 54%) (GMW)
Traction Factor × Wt. on driving wheels = 0.50 × 176,860 lb × 54% = 47,628 lb

Empty: (weight on driving wheels = 69%) (GMW)
Traction Factor × Wt. on driving wheels = 0.50 × 102,460 lb × 69% = 35,394 lb

4. Derate for Altitude:
Check power available at 7500 ft from altitude deration table in the Tables Section.
631G — 100% 12H — 83%
D9T — 100% 825G — 100%
Then adjust if necessary:

Load Time — controlled by D9T, at 100% power, no change.

Travel, Maneuver and Spread time — 631G, no change.

5. **Compare Total Resistance to Tractive Effort on haul:**

 Grade Resistance —
 \[GR = \text{lb/ton} \times \text{tons} \times \text{adverse grade in percent} \]

 - Sec. C: = 20 lb/ton \times 88.4 tons \times 4\% grade = 7072 lb

 Rolling Resistance —
 \[RR = \text{RR Factor (lb/ton)} \times \text{GMW (tons)} \]

 - Sec. A: = 200 lb/ton \times 88.4 tons = 17,686 lb
 - Sec. B: = 80 lb/ton \times 88.4 tons = 7072 lb
 - Sec. C: = 80 lb/ton \times 88.4 tons = 14,144 lb
 - Sec. D: = 200 lb/ton \times 88.4 tons = 17,686 lb

 Total Resistance —
 \[TR = RR + GR \]

 - Sec. A: = 17,686 lb + 0 = 17,686 lb
 - Sec. B: = 7072 lb + 0 = 7072 lb
 - Sec. C: = 7072 lb + 6496 lb = 14,144 lb
 - Sec. D: = 17,686 lb + 0 = 17,686 lb

 Check usable pounds pull against maximum pounds pull required to move the 631G.
 Pull usable ... 47,628 lb loaded
 Pull required ... 17,686 lb maximum total resistance
 Estimate travel time for haul from 631G (loaded) travel time curve; read travel time from distance and effective grade.

 Travel time (from curves):

 - Sec. A: 0.60 min
 - Sec. B: 1.00
 - Sec. C: 1.20
 - Sec. D: 0.60

 \[3.40 \text{ min} \]

 NOTE: This is an estimate only; it does not account for all the acceleration and deceleration time, therefore it is not as accurate as the information obtained from a computer program.

6. **Compare Total Resistance to Tractive Effort on return:**

 Grade Assistance —
 \[GA = 20 \text{ lb/ton} \times \text{tons} \times \text{negative grade in percent} \]

 - Sec. C: = 20 lb/ton \times 51.2 tons \times 4\% grade = 4096 lb

 Rolling Resistance —
 \[RR = \text{RR Factor} \times \text{Empty Wt (tons)} \]

 - Sec. D: = 200 lb/ton \times 51.2 tons = 10,240 lb
 - Sec. C: = 80 lb/ton \times 51.2 tons = 4091 lb
 - Sec. B: = 80 lb/ton \times 51.2 tons = 4091 lb
 - Sec. A: = 200 lb/ton \times 51.2 tons = 10,240 lb

 Total Resistance —
 \[TR = RR – GA \]

 - Sec. D: = 10,240 lb – 0 = 10,240 lb
 - Sec. C: = 4096 lb – 4096 lb = 0
 - Sec. B: = 4096 lb – 0 = 4096 lb
 - Sec. A: = 10,240 lb – 0 = 10,240 lb

 Check usable pounds pull against maximum pounds pull required to move the 631G.
 Pull usable ... 35,349 lb empty
 Pull required ... 10,240 lb

 Travel time for return from 631G empty travel time curve:

 Travel time (from curves):

 - Sec. D: 0.40 min
 - Sec. C: 0.55
 - Sec. B: 0.80
 - Sec. A: 0.40

 \[2.15 \text{ min} \]

7. **Estimate Cycle Time:**

 Total Travel Time (Haul plus Return) = 5.55 min

 Adjusted for altitude: 100% \times 5.55 min = 5.55 min

 Load Time

 0.7 min

 Maneuver and Spread Time

 0.7 min

 Total Cycle Time

 \[6.95 \text{ min} \]

8. **Check pusher-scraper combinations:**

 Pusher cycle time consists of load, boost, return and maneuver time. Where actual job data is not available, the following may be used.

 Boost time = 0.10 minute
 Return time = 40% of load time
 Maneuver time = 0.15 minute

 Pusher cycle time = 140% of load time + 0.25 minute
 Pusher cycle time = 140\% of 0.7 min + 0.25 minute

 \[= 0.98 + 0.25 = 1.23 \text{ minute} \]

 Scraper cycle time divided by pusher cycle time indicates the number of scrapers which can be handled by each pusher.

 \[\frac{6.95 \text{ min}}{1.23 \text{ min}} = 5.65 \]
Each push tractor is capable of handling five plus scrapers. Therefore the two pushers can adequately serve the eleven scrapers.

9. Estimate Production:
Cycles/hour = 60 min ÷ Total cycle time
= 60 min/hr ÷ 6.95 min/cycle
= 8.6 cycles/hr

Estimated load = Heaped capacity × L.F.
= 31 LCY × 0.80
= 24.8 BCY

Hourly unit production = Est. load × cycles/hr
= 24.8 BCY × 8.6 cycles/hr
= 213 BCY/hr

Adjusted production = Efficiency factor × hourly production
= 0.83 (50 min hour) × 213 BCY
= 177 BCY/hr

Hourly fleet production = Unit production × No. of units
= 177 BCY/hr × 11
= 1947 BCY/hr

10. Estimate Compaction:
Compaction requirement = S.F. × hourly fleet production
= 0.85 × 1947 BCY/hr
= 1655 CCY/hr

Compaction capability (given the following):
- Compacting width, 7.4 ft (W)
- Average compacting speed, 6 mph (S)
- Compacted lift thickness, 7 in (L)
- No. of passes required, 3 (P)
- 825G production =

\[
CCY/hr = \frac{W \times S \times L \times 16.3}{P} \quad \text{(conversion constant)}
\]
\[
= \frac{7.4 \times 6 \times 7 \times 16.3}{3}
\]
\[
= 1688 \text{ CCY/hr}
\]

Given the compaction requirement of 1655 CCY/hr, the 825G is an adequate compactor match-up for the rest of the fleet. However, any change to job layout that would increase fleet production would upset this balance.

11. Estimate Total Hourly Cost:

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Rate</th>
<th>Units</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>631G</td>
<td>$65.00/hr</td>
<td>11</td>
<td>$715.00</td>
</tr>
<tr>
<td>D9T</td>
<td>$75.00/hr</td>
<td>2</td>
<td>150.00</td>
</tr>
<tr>
<td>12H</td>
<td>$15.00/hr</td>
<td>2</td>
<td>30.00</td>
</tr>
<tr>
<td>825G</td>
<td>$40.00/hr</td>
<td>1</td>
<td>40.00</td>
</tr>
<tr>
<td>Operators</td>
<td>$20.00/hr</td>
<td>16</td>
<td>320.00</td>
</tr>
</tbody>
</table>

Total Hourly Owning and Operating Cost = $1,255.00

12. Calculate Performance:

\[
\text{Cost per BCY} = \frac{\text{Total cost/hr}}{\text{Production/hr}}
\]
\[
= \frac{1,255.00}{1947 \text{ BCY/hr}}
\]
\[
= 64\text{¢ BCY}
\]

NOTE: Ton-MPH calculations should be made to judge the ability of the tractor-scraper tires to operate safely under these conditions.

13. Other Considerations:
If other equipment such as rippers, water wagons, discs or other miscellaneous machines are needed for the particular operation, then these machines must also be included in the cost per BCY.
Job Layout — Haul and Return:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Sec. A — Cut 150 m</th>
<th>Sec. B — Haul 450 m</th>
<th>Sec. C — Haul 300 m</th>
<th>Sec. D — Fill 150 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td>100 kg/t</td>
<td>40 kg/t</td>
<td>40 kg/t</td>
<td>100 kg/t</td>
</tr>
<tr>
<td>Eff. Grade</td>
<td>10%</td>
<td>4%</td>
<td>8%</td>
<td>10%</td>
</tr>
</tbody>
</table>

Total Effective Grade = RR (%) ± GR (%)

Sec. A: Total Effective Grade = 10% + 0% = 10%
Sec. B: Total Effective Grade = 4% + 0% = 4%
Sec. C: Total Effective Grade = 4% + 4% = 8%
Sec. D: Total Effective Grade = 10% + 0% = 10%

1. Estimate Payload:
 Est. load (LCM) × L.F. × Bank Density = payload
 24 LCM × 0.80 × 1770 kg/BCM = 34 000 kg payload

2. Machine Weight:
 Empty Wt. — 46 475 kg or 46.48 metric tons
 Wt. of Load — 34 000 kg or 34 metric tons
 Total (GMW) — 80 475 kg or 80.48 metric tons

3. Calculate Usable Pull (traction limitation):
 Loaded: (weight on driving wheels = 54%) (GMW)
 Traction Factor × Wt. on driving wheels = 0.50 × 80 475 kg × 54% = 21 728 kg
 Empty: (weight on driving wheels = 69%) (GMW)
 Traction Factor × Wt. on driving wheels = 0.50 × 46 475 kg × 69% = 16 034 kg

4. Derate for Altitude:
 Check power available at 2300 m from altitude deration table in the Tables Section.
 631G — 100% 12H — 83%
 D9T — 100% 825G — 100%
 Then adjust if necessary:
 Load Time — controlled by D9T, at 100% power, no change.
 Travel, Maneuver and Spread time — 631G, no change.

5. Compare Total Resistance to Tractive Effort on haul:
 Grade Resistance —
 GR = 10 kg/metric ton × tons × adverse grade
 in percent
 Sec. C: = 10 kg/metric ton × 80.48 metric tons × 4% grade = 3219 kg

6. Compare Total Resistance to Tractive Effort on return:
 Grade Assistance —
 GA = 10 kg/mton × metric tons × negative grade
 in percent
 Sec. C: = 10 kg/metric ton × 46.48 metric tons × 4% grade = 1859 kg

Rolling Resistance —
 RR = RR Factor (kg/mton) × GMW (metric tons)
 Sec. A: = 100 kg/metric ton × 80.48 metric tons
 = 8048 kg
 Sec. B: = 40 kg/metric ton × 80.48 metric tons
 = 3219 kg
 Sec. C: = 40 kg/metric ton × 80.48 metric tons
 = 3219 kg
 Sec. D: = 100 kg/metric ton × 80.48 metric tons
 = 8048 kg

Total Resistance —
 TR = RR + GR
 Sec. A: = 8048 kg + 0 = 8048 kg
 Sec. B: = 3219 kg + 0 = 3219 kg
 Sec. C: = 3219 kg + 3219 kg = 6438 kg
 Sec. D: = 8048 kg + 0 = 8048 kg
 Check usable kilogram force against maximum kilogram force required to move the 631G.
 Force usable ... 21 728 kg loaded
 Force required ... 8048 kg maximum total resistance
 Estimate travel time for haul from 631G (loaded)
 travel time curve; read travel time from distance and effective grade.
 Travel time (from curves):
 Sec. A: 0.60 min
 Sec. B: 1.00
 Sec. C: 1.20
 Sec. D: 0.60
 Travel time — 3.40 min

NOTE: This is an estimate only; it does not account for all the acceleration and deceleration time, therefore it is not as accurate as the information obtained from a computer program.
Rolling Resistance —
RR = RR Factor × Empty Wt.
Sec. D: = 100 kg/metric ton × 46.48 metric tons
= 4648 kg
Sec. C: = 40 kg/metric ton × 46.48 metric tons
= 1859 kg
Sec. B: = 40 kg/metric ton × 46.48 metric tons
= 1859 kg
Sec. A: = 100 kg/metric ton × 46.48 metric tons
= 4648 kg

Total Resistance —
TR = RR – GA
Sec. D: = 4648 kg – 0 = 4648 kg
Sec. C: = 1859 kg – 1859 kg = 0
Sec. B: = 1859 kg – 0 = 1859 kg
Sec. A: = 4648 kg – 0 = 4648 kg

Check usable kilogram force against maximum force required to move the 631G.
Kilogram force usable ... 16 034 kg empty
Kilogram force required ... 4645 kg

Estimate travel time for return from 631G empty travel time curve.
Travel time (from curves):
Sec. D: 0.40 min
Sec. C: 0.55
Sec. B: 0.80
Sec. A: 0.40
2.15 min

7. Estimate Cycle Time:
Total Travel Time (Haul plus Return) = 5.55 min
Adjusted for altitude: 100% × 5.55 min = 5.55 min
Load Time = 0.7 min
Maneuver and Spread Time = 0.7 min
Total Cycle Time = 6.95 min

8. Check pusher-scaper combinations:
Pusher cycle time consists of load, boost, return and maneuver time. Where actual job data is not available, the following may be used.

Boost time = 0.10 minute
Return time = 40% of load time
Maneuver time = 0.15 minute
Pusher cycle time = 140% of load time + 0.25 minute
Pusher cycle time = 140% of 0.7 min + 0.25 minute
= 0.98 + 0.25 = 1.23 minute

Scraper cycle time divided by pusher cycle time indicates the number of scrapers which can be handled by each pusher.

\[
\frac{6.95 \text{ min}}{1.23 \text{ min}} = 5.65
\]

Each push tractor is capable of handling five plus scrapers. Therefore the two pushers can adequately serve the eleven scrapers.

9. Estimate Production:
Cycles/hour = 60 min ÷ Total cycle time
= 60 min/hr ÷ 6.95 min/cycle
= 8.6 cycles/hr

Estimated load = Heaped capacity × L.F.
= 24 LCM × 0.80
= 19.2 BCM

Hourly unit production = Est. load × cycles/hr
= 19.2 BCM × 8.6 cycles/hr
= 165 BCM

Adjusted production = Efficiency factor × hourly production
= 0.83 (50 min hour) ×
165 BCM
= 137 BCM/hr

Hourly fleet production = Unit production ×
No. of units
= 137 BCM/hr × 11 units
= 1507 BCM/hr

10. Estimate Compaction:
Compaction requirement = S.F. × hourly fleet production
= 0.85 × 1507 BCM/hr
= 1280 CCM/hr

Compaction capability (given the following):
Compact width, 2.26 m (W)
Average compacting speed, 9.6 km/h (S)
Compacted lift thickness, 18 cm (L)
No. of passes required, 3 (P)

825G production =
\[
\frac{W \times S \times L \times 10}{P} \text{ (conversion factor)}
\]
= \[
\frac{2.26 \times 9.6 \times 18 \times 10}{3}
\]
= 1302

Given the compaction requirement of 1280 CCM/h, the 825G is an adequate compactor match-up for the rest of the fleet. However, any change to job layout that would increase fleet production would upset this balance.
11. Estimate Total Hourly Cost:

- **631G @ $65.00/hr × 11 units** = $715.00
- **D9T @ $75.00/hr × 2 units** = $150.00
- **12H @ $15.00/hr × 2 units** = $30.00
- **825G @ $40.00/hr × 1 unit** = $40.00
- **Operators @ 20.00/hr × 16 men** = $320.00

Total Hourly Owning and Operating Cost = $1,255.00

12. Calculate Performance:

Cost per BCM = \[
\frac{\text{Total cost/hr}}{\text{Production/hr}} = \frac{1,255.00}{1507 \text{ BCM/hr}} = 83¢/\text{BCM}
\]

NOTE: Ton-km/h calculations should be made to judge the ability of the tractor-scaper tires to operate safely under these conditions.

13. Other Considerations:

If other equipment such as rippers, water wagons, discs or other miscellaneous machines are needed for the particular operation, then these machines must also be included in the cost per BCM.

SOFTWARE NOTE: The Cat DOZSIM program can provide a valuable tool for production dozing applications. Motor Grader Calculator can be used to determine the number of graders required to maintain haul roads, given a set of site parameters.

SYSTEMS

Caterpillar offers a variety of machines for different applications and jobs. Many of these separate machines function together in mining and earth-moving systems.

- **Bulldozing with track-type tractors**
- **Load-and-Carry with wheel loaders**
- **Scrapers self-loading, elevator, auger, or push-pull configurations, or push-loaded by track-type tractors**
- **Articulated trucks loaded by excavators, track loaders or wheel loaders**
- **Off-highway trucks loaded by shovels, excavators or wheel loaders**

Haul System Selection: In selecting a hauling system for a project, there may seem to be more than one “right” choice. Many systems may meet the distance, ground conditions, grade, material type, and production rate requirements. After considering all of the different factors, one hauling system usually provides better performance and better potential for lowest cost per ton or BCY/BCM. This makes it critical for the dealer and customer to work together to get accurate information for their operation or project. Caterpillar is committed to providing the correct earthmoving system to match the customer's specific needs.

GENERAL LOADED HAUL DISTANCES FOR MOBILE SYSTEMS

- **Track-Type Tractor**
- **Wheel Loader**
- **Wheel Tractor-Scraper**
- **Articulated Truck**
- **Rear Dump Truck**

<table>
<thead>
<tr>
<th>Loaded Haul Distance</th>
<th>10 m</th>
<th>100 m</th>
<th>1000 m</th>
<th>10 000 m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33 ft</td>
<td>328 ft</td>
<td>3280 ft</td>
<td>32,800 ft</td>
</tr>
</tbody>
</table>
PRODUCTION ESTIMATING

Loading Match — Loading tools have a production range that varies with material, bucket configuration, target size, operator skill and load area conditions. The loader/truck matches given in the following table are with the typical number of passes and production range.

Your Cat dealer can provide advice and estimates based on your specific conditions.

<table>
<thead>
<tr>
<th>Cat Earthmoving and Mining Systems Production/50 Min. Hr.</th>
<th>Cat Aggregate Systems Production/50 Min. Hr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tonnes</td>
<td>Tons</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>2270/2450</td>
<td>2500/2700</td>
</tr>
<tr>
<td>2450/2700</td>
<td>2700/3000</td>
</tr>
<tr>
<td>2270/2450</td>
<td>2500/2700</td>
</tr>
<tr>
<td>2450/2700</td>
<td>2700/3000</td>
</tr>
<tr>
<td>1800/2000</td>
<td>2000/2200</td>
</tr>
<tr>
<td>1530/1710</td>
<td>1700/1900</td>
</tr>
<tr>
<td>1180/1360</td>
<td>1300/1500</td>
</tr>
<tr>
<td>800/1000</td>
<td>880/1100</td>
</tr>
<tr>
<td>2720/2900</td>
<td>3000/3200</td>
</tr>
<tr>
<td>2540/2720</td>
<td>2800/3000</td>
</tr>
<tr>
<td>2630/2810</td>
<td>2900/3100</td>
</tr>
<tr>
<td>2450/2630</td>
<td>2700/2900</td>
</tr>
<tr>
<td>2540/2720</td>
<td>2800/3000</td>
</tr>
<tr>
<td>2360/2540</td>
<td>2600/2800</td>
</tr>
<tr>
<td>1900/2100</td>
<td>2100/2300</td>
</tr>
<tr>
<td>1700/1900</td>
<td>1700/2100</td>
</tr>
<tr>
<td>1800/2000</td>
<td>2000/2200</td>
</tr>
<tr>
<td>1540/1810</td>
<td>1700/2000</td>
</tr>
<tr>
<td>910/1090</td>
<td>1000/1200</td>
</tr>
<tr>
<td>730/820</td>
<td>800/1000</td>
</tr>
<tr>
<td>630/820</td>
<td>700/900</td>
</tr>
</tbody>
</table>

FUEL CONSUMPTION AND PRODUCTIVITY

Fuel efficiency is the term used to relate fuel consumption and machine productivity. It is expressed in units of material moved per volume of fuel consumed. Common units are cubic meters or tonnes per liter of fuel (cubic yards or tons/gal). Determining fuel efficiency requires measuring both fuel consumption and production.

Measuring fuel consumption involves tapping into the vehicle’s fuel supply system — without contaminating the fuel. The amount of fuel consumed during operation is then measured on a weight or volumetric basis and correlated with the amount of work the machine has done. Cat machines equipped with VIMSTM system can record fuel consumed with relative accuracy, given the engine is performing close to specifications.
FORMULAS AND RULES OF THUMB

Production, hourly

\[\text{Load (BCM)/cycle} \times \text{cycles/hr} \]
\[\text{Load (BCY)/cycle} \times \text{cycles/hr} \]

Load Factor (L.F.)

\[\frac{100\%}{100\% + \% \text{ swell}} \]

Load (bank measure)

\[\frac{\text{Loose cubic meters (LCM)}}{\text{L.F.}} \times \text{L.F.} \]
\[\frac{\text{Loose cubic yards (LCY)}}{\text{L.F.}} \times \text{L.F.} \]

Compacted cubic meters

\[\text{Shrinkage Factor (S.F.)} \]

\[\frac{\text{Bank cubic meters (or yards)}}{\text{Bank cubic meters (or yards)}} \]

Density

\[\frac{\text{Weight/Unit Volume}}{\text{Weight of load}} \]
\[\frac{\text{Bank density}}{\text{Bank density}} \]

Rolling Resistance Factor

\[= 20 \text{ kg/t} + (6 \text{ kg/t/cm} \times \text{cm}) \]
\[= 40 \text{ lb/ton} + (30 \text{ lb/ton/inch} \times \text{inches}) \]

Rolling Resistance

\[= \text{RR Factor (kg/t)} \times \text{GMW (tons)} \]
\[= \text{RR Factor (lb/ton)} \times \text{GMW (tons)} \]

Rolling Resistance (general estimation)

\[= 2\% \text{ of GMW} + 0.6\% \text{ of GMW per cm tire penetration} \]
\[= 2\% \text{ of GMW} + 1.5\% \text{ of GMW per inch tire penetration} \]

\[\% \text{ Grade} = \frac{\text{vertical change in elevation (rise)}}{\text{corresponding horizontal distance (run)}} \]

Grade Resistance Factor

\[= 10 \text{ kg/m ton} \times \% \text{ grade} \]
\[= 20 \text{ lb/ton} \times \% \text{ grade} \]

Grade Resistance

\[= \text{GR Factor (kg/t)} \times \text{GMW (tons)} \]
\[= \text{GR Factor (lb/ton)} \times \text{GMW (tons)} \]

Grade Resistance

\[= 1\% \text{ of GMW} \times \% \text{ grade} \]

Total Resistance

\[= \text{Rolling Resistance (kg or lb)} + \text{Grade Resistance (kg or lb)} \]

Total Effective Grade (%)

\[= \text{RR} (%) + \text{GR} (%) \]

Usable pull (traction limitation)

\[= \text{Coeff. of traction} \times \text{weight on drivers} \]
\[= \text{Coeff. of traction} \times \text{(Total weight} \times \% \text{ on drivers})\]

\[\text{Pull required} = \text{Rolling Resistance + Grade Resistance} \]
\[= \text{Total Resistance} \]

Total Cycle Time

\[= \text{Fixed time} + \text{Variable time} \]

Fixed time: See respective machine production section.

Variable time

\[= \text{Total haul time} + \text{Total return time} \]

Travel Time

\[= \frac{\text{Distance (m)}}{\text{Speed (m/min)}} \]
\[= \frac{\text{Distance (ft)}}{\text{Speed (fpm)}} \]

Cycles per hour

\[\frac{60 \text{ min/hr}}{\text{Total cycle time (min/cycle)}} \]

Adjusted production

\[= \text{Hourly production} \times \text{Efficiency factor} \]

No. of units required

\[= \frac{\text{Hourly production required}}{\text{Unit hourly production}} \]

No. of scrapers a pusher will load

\[= \frac{\text{Scraper cycle time}}{\text{Pusher cycle time}} \]

Pusher cycle time (min)

\[= 1.40 \text{ Load time (min)} + 0.25 \text{ min} \]

GMW (kg) \times \text{Total Effective Grade} \times \text{Speed (km/h)}

Grade Horsepower

\[= \frac{273.75}{273.75} \]

GMW (lb) \times \text{Total Effective Grade} \times \text{Speed (mph)}

\[= \frac{375}{375} \]
Notes —